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where TOb is the bulk temperature at the entrance. If the 
fluid enters the duct at constant temperature, T,, then 
TOh = T,. 

rz 
i”=+ 

ab+ac+bc 4abc --- 
3 6 3P 

(19) 

By combining equations f8), (12) and (15) it is found that where a, b and c are the lengths of the three sides. And for 
any m sided regular polygonal duct 

Thus one can determine the temperature of the fluid at any 
location past the thermal entrance region by knowing only 
the temperature of the fluid at the duct’s entrance. If on the 
other hand the temperature boundary condition is given by 
equation (3b) instead of f3a) 

(17) 

The square of the radius of gyration, 7, can be found by 
integrating over each region A~ and Aj as shown in Fig 2. 
The results add to give 

(18) 

for any inscribable duct. Also for any triangular duct 

A summary of these results is given in Table 1. 
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ai 
bt, 
CP 
F, 
G, 
G$ 
H, 
h, 
h*, 
K 
KP 
L 
M, 
m 

functions defined by equations (26); 
functions defined by equations (26); 
specific heat at constant pressure ; 
velocity function ; 
a constant defined by equation (lob) ; 
functions governed by equations (21); 
total heat released at the jet entrance; 
specific enthalpy; 
specific enthalpy of the reference state; 
thermal conductivity ; 

n, 
P” 
Q, 
40 
ri, 
s, 
T, 
u.3 
I4 0, 

x, Y, 
zi, 

radiation loss parameter defined by equation (9) ; 
Prandtl number ; 
radiation loss per unit mass ; 
functions defined by equations (28); 
functions defined by equations (28): 
a similarity variable defined by equation(lOa); 
temperature ; 
axial velocity given by equation (15); 
velocity component in Cartesian system ; 
spatial coordinates ; 
functions defined by equation (27). 

Planck mean absorption coefficient ; 
radiation loss parameter defined by equation (9); 
total momentum released at the jet entrance ; 
a function defined by equation (15); 

Greek symbols 
r, a function defined by equation (18); 

Il. a smilarity variable defined by equation (lOa) ; 
tr, viscosity ; 
P. density; 

t Assistant Professor of Mechanical Engineering. 
p*. 
0, 

density of the reference state ; 
Stefan-Boltzmann constant. 
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Subscripts 

r, designate the zero-, first-, and second-order radia- 
tion effects, respectively, = 0, 1,2. 

INTRODUCTION 

THE study of the momentum and energy fields in free jet 
flows has received considerable attention in the past and the 
present [I, 21. It is well known that in free jets associated with 
heat release, the determination of the velocity and the 
temperature distributions requires the solution of the 
coupled continuity, momentum, and energy equations 
with the equation of state. In considering the energy equation, 
it has been usual to disregard the possibility that the flowing 
gas could be radiating although this may alter the temp- 
erature and the velocity distributions in the jet. Recently, 
some authors have investigated the effect of radiation 
transport on the flow and energy in fee jets [I. 47. However, 
very few quantitative results have been reported to weigh 
the relative effect of radiation to convection transport in 
the jet. 
’ The present paper deals with the momentum and energy 

transport in a radiating, laminar, compressible, planar free 
jet. The Sow model considered here is a jet issuing into a 
quiescent atmosphere chosen to be in a the~od~~ic 
reference state (25°C and 1 atm pressure). The radiative 
process is described by the optically thin model. The gas is 
usually considered to be optically thin when the character- 
istic length of the free jet is small or the radiating gas is 
diluted by other non-radiating gases, as in many cases of 
practical applications. In this analysis, the governing 
equations are investigated by a boundary layer type of 
analysis. The radiation loss term occurring in the energy 
equation was found to be expressed by a power function ofthe 
enthalpy for most radiating gases up to a temperature of 
5,mR. This is different from the grey gas analysis in that 
the temperature dependence of the absorption coefficient 
is taken into account here. Based on the power law model, 
it is shown that the effect of radiation on the enthalpy 
distribution could be treated as a perturbation on the zero- 
radiation solution, and the perturbation functions are given 
by linear second-order ordinary differential equations. 
Explicit approximate expressions for the perturbation 
functions are obtained by using integral methods. The 
numerical calculations show that the specific enthalpy of a 
radiating gas decreases from its zero-radiation value at any 
point in the jet. Consequently the density increases, and as a 
result of momentum conservation the velocity decreases 
from its zero-radiation value except at the center of the jet. 

ANALYSIS 

The governing equations for a radiating, laminar, com- 
pressible, planar free jet subject to the usual boundary layer 
approximations are, 

(P4, + (PO), = 0 

puu, + pm, = (,f4uJy 

pub, + pvh? = 

p/p* = h*/h (4) 
where the density p. the enthalpy h and the velocity com- 
ponents u and v are functions of the spatial coordinates 
x and y. The density p* and the enthalpy h* are those of a 
suitable reference state, Q, is the radiation loss per unit 
mass. 

With the surrounding atmosphere chosen to be at rest 
and at a thermodynamic reference state (25°C and 1 atm 
pressure) for simplification of the analysis, the boundary 
conditions on equations (lH3) are given by : 

v=o, go, gco : at)=0 (Sal 

u=O, h=O aty= rr. (5b) 

Since the pressure is constant and the surrounding 
atmosphere is non-radiating, the velocity and temperature 
distribution must satisfy the conditions of momentum and 
energy ~nservation, i.e. 

M = constant = 2 7 puz dy 
0 

(6) 

and 

H = constant = 2 7 puh dy + 2 j 7 pQr dy dx. (71 
0 00 

Equations (l)-(7) give complete specification of the prob- 
lem. Before starting with the analysis, the functional de- 
pendence of the radiation loss on the enthalpy will be deter- 
mined as follows: The radiation loss term in equation (3) 
is often written in terms of the’ Planck mean absorption 
coefftcient as, 

Q, = 4aK,T4 

where K, is the Planck mean absorption coefftcient. For 
radiating gases up to a temperature of 5,mR, values of I(, 
have been calculated from spectroscopic data in [S] and 161. 
Using the therm~~~ic tables on tem~rature~nthalpy 
transformation [7] and the calculated values of K, the radia- 
tion loss Q, given by equation (8) was plotted vs. the enthalpy 
as shown in Fig. 1. It was found that Q, could be easily 
fitted by an equation of the type ; 

Q, =t h” (9) 

where the power term n varies approximately between 1.75 
and 20. 
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FIG. 1. Radiation energy loss per unit mass Q, as function 
of the enthalpy h at a pressure of one atmosphere. 

Thefrow problem 
It can be shown [S] that, using the following similarity 

variables 
X 

S = (2 p*/PU, dx)*‘*, 

I 

tI=:*pdy (lOa) 

h 

F’(rl) = u/u, G = p/.i/(p*/P) = const., 

P, = p&K = const. (lob) 

the governing equations (2) and (6) for the velocity distribu- 
tion reduce to 

GF”’ + FF” + (F’)z = 0 (11) 

M = 2U,,Sj$‘)2 dtf 
0 

(12) 

subject to the boundary conditions 

Equation (11) with its boundary conditions given by 
equation (13) possess an exact solution [1,9], 

F = se& [q/,/(2G)]. (14) 

Using equations (12) and (14), the axial velocity U0 could 

be determined as, 

where m = 3M,‘[4&2G)]. (15) 

The t~l Frobl~m 

By using the similarity variables given by equations (lo), 
the governing equations (3) and (7) for the energy distribu- 
tion [with Q, given by equation (9)] reduce to, 

W+h) ; h” -k (Fh)’ - F’ as = I’S+h* (16) 
* 

H=2S~F’hdtT+2rSS~S4h”dtldS (17) 
0 00 

where f is given by : 

l- = 32G~f(9~2~*~*). (18) 

Equation (16) is subject to the boundary conditions : 

h’(0) = 0, h(w) = 0. (19) 

It is known [9] from the zero-radiation solution of 
equation (16) that the enthalpy h = O[i]/S. Therefore under 
the condition of 0 < n c 5 and with S < 0 [l],the radiation 
effect which is represented by the right-hand side of equa- 
tion (16) on the enthalpy distribution can be considered as 
a perturbation effect on the zero-radiation solution provided 
that r+ 1. Since most radiating gases in the temperature 
range of the present study are included in the range of 
0 < n c 5, a solution of equation (16) which satisfies 
equation (17) can be written as : 

h(S, q) = G&)/S + rS4-” G,(q) + Y2S9-2” G,(q) -I- (20) 

substituting this expression in equation (16) and recognizing 
that the order of magnitude of the second and third terms 
in equation (20) is much less than that of the fast term, after 
equating the coefficients of TS’ on both sides of equation 
(16). one arrives at the following set of equations: 

g c; + (FG,)’ = 0 
, 

CW 

; G;’ +- (FG,)’ - (5 - @“G, = G”, GW 
r 

$ G; + (FG,)’ - (10 - 2n)F’Gz = nG:-‘G, (21~) 
F(0) = F”(0) = 0, Fyco) = 0: (13) ‘, 
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Zero rodiotion solution G=1, pr=I , s=1, n=2, r=o.1 
exact method 

Zero-rodiotion solution 
integral method 

FIG. 2. Radiation effect on the enthalpy distribution for 
different values of heat release. 

subject to boundary conditions : 

GAO) = 0 and G,(cc) = 0 for i = 0, 1, 2 (22) 

while equation (17) takes the form : m 
H = 2 J 

03 
F’G,dn + 2l-S-” [s F’G1 dn 

0 0 

by use of equations (21) and the-boundary conditions given 
by equation (22), it can be easily shown that the expressions 
in parenthesis cancel. 

Equations (21) form a set of linear second-order ordinary 
diNerential equations which can be easily solved in sequence 
by numerical computations. It can be recognized that 
equation (21a) is the governing equation for the xero-radia- 
tion solution which was found to possess an explicit solution 
[9]. By using the solution of equation (21a), subsequent 
solutions for the perturbation functions Gi and G, could be 
obtained for any radiating gas once its value of n is specitied. 
An alternative procedure which renders an explicit, but 
approximate solution for the enthalpy h will be derived here. 
This method is based on the integral methods which has 
been previously applied in investigating the flow field in 
wakes and jets [lo, 11-j. 

The approximate solutions of equations (21) are obtained 
by assuming : 

Gi = a, exp[ -Prb,$/(2G)] for i = 0, 1,2 (24) 

and 

F” = exp [ - $/(2G)] (25) 

where ai and b, are constants and can be determined by 
satisfying both equation (21) at r~ = 0 and the constraints 
implied by equation (23). After solving the resulting alge- 
braic equations, the values of ais and his were found to be 
given by : 

b, = I (264 

a, = -a”,Z,/C(5 - n) Jnl, b, = Zf - l/Pr 

a2 = --“a”,-‘a,Z,/{(lO - 2n),/[(n - 1) + b, I}, 

b, = 2; - l/Pr 

where 

Zi = [ri + (4: + if)*]+ 

and 

+ [ri - (q? + r?)*]j L , 
fori = 1.2 

r =(5--n)+ 
1 2 ’ 

4 = (4- n - l/Pr) 
’ 3 

(26b) 

(264 

(27) 

(28a) 
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FIG. 3. Radiation effect on the velocity distribution for 
different values of heat release. 

Zero-radiation solution 
integral method 
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FIG. 4. The enthalpy and the velocity distributions for 
dilTerent values of the radiation loss. 

rz = (5 - n,J[(n - 1) + b,l, possible to determine explicitly the velocity and the enthalpy 

q2 = (9 - 2n - 1PV 
distributions in terms of the physical coordinates x and y. 

(2gb) The transformation from the S - rl coordinates to the 
3 x - y coordinates can be accomplished by considering 

the nature of the expression for Zl(i = 1,2) given by equa- equations (1Oa) and (15) for determining the coordinate x 

tion (27) arises from the fact that the ais are governed by and equations (4), (lOa), (15) and (20) for y. The result is: 

third-order polynomial equations. x _ 4 J@G) ss 
With the values of the G;‘s given by equation (24), it is 9/l’p’M 

(29a) 



1196 SHORTER COMMUNICATIONS 

distribution versus the coordinate y are shown in Fig. 3. 
Finally. the dependence of the velocity and the enthalpy 
distributions on the radiation loss function is shown in 
Fig. 4 for a f=ed value of heat released at the jet entrance. 
It is clear from the figure that for large values of n, radiation 
plays an important role on the energy transport in free jets. 

(29b) 

RESULTS AND DISCUSSION 

It is clear, from the nature of the radiation function in 
equation (3) that the effect of radiation is to decrease the 
enthalpy from its zero-radiation value at any point in the 
jet. Such decrease will depend on the heat released at the jet 
entrance and the functional behaviour of the radiation loss 
on h. Values of tt as a function of the distance y from the jet 
axis are plotted in Fig. 2 by use of equations (20), (24) and 
(29b) for different values of heat release and for selected 
values of the other parameters. Shown also iti the figure is 
the zero-radiation solution obtained by both exact and 
integral methods. It is clear that the integral methods yield 
a solution which is quite close to that obtained exactly. 
Therefore, the solution for the enthalpy with radiation 
obtained by using the integral methods could be considered 
reasonably accurate. 

The decrease in the value of the enthalpy due to radiation 
will result in an increase in the local density as given by 
equation (4). Since the momentum at any plane normal to 
the jet axis is conserved, the increase in the density will 
result in a decrease in the velocity, except at the jet axis 
where the velocity is governed by the momentum release at 
the jet entrance. Representative values of the velocity 
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NO~NCLA~ 
constaIlt ; 
constant ; 
mass concentration ; 
thickness of slot lip ; 

u, velocity in x-direction ; 
ii,, average velocity through the slot 

YC 
1 z- udy; 

Yc s 
0 


