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where Ty, is the bulk temperature at the entrance. If the
fluid enters the duct at constant temperature, Tp, then
Top = To
By combining equations (8}, (12) and (15) it is found that
Gw =

B=T,, — ——r% 16

o T 5 kre r (16}

Thus one can determine the temperature of the fluid at any

location past the thermal entrance region by knowing only

the temperature of the fluid at the duct’s entrance. If on the

other hand the temperature boundary condition is given by
equation (3b) instead of (3a)

4a
B=T,—2* (r§+-;z—‘).

o (17

The square of the radius of gyration, r%, can be found by
integrating over each region 4, and A; as shown in Fig. 2.
The results add to give

21

;7‘“:’““*—%[3?‘*'(141"9:)3]
=1

2 6P, (18)

for any inscribable duct. Also for any triangular duct
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4 abc

2 ab+ac+ be
3P

o 2
r=E3t 6

where g, b and ¢ are the lengths of the three sides. And for
any m sided regular polygonal duct

2
- T 1 .=
== {1+ ~tan*—].
§ 2( 3 m

A summary of these results is given in Table 1.
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NOMENCLATURE
a, functions defined by equations (26);
b, functions defined by equations (26);
C,, specific heat at constant pressure;
F, velocity function;
G, aconstant defined by equation (10b);
G, functions governed by equations (21);
H, total heat released at the jet entrance;
h,  specific enthalpy;
h*, specific enthalpy of the reference state;
K, thermal conductivity;
K,, Planck mean absorption coefficient ;
L, radiation loss parameter defined by equation (9);
M, total momentum released at the jet entrance;
m, a function defined by equation (15);

1 Assistant Professor of Mechanical Engineering.

n,  radiation loss parameter defined by equation (9);
P,, Prandtl number;

Q.. radiation loss per unit mass;

g, functions defined by equations (28);

r,  functions defined by equations (28);

S,  asimilarity variable defined by equation(10a);
T, temperature;

U, axial velocity given by equation (15);

velocity components in Cartesian system;

3 spatial coordinates;

Z,, functions defined by equation (27).

Greek symbols
I,  afunction defined by equation (18);
7, asmilarity variable defined by equation {10a);
u,  viscosity;
p,  density;
p*, density of the reference state;
o, Stefan-Boltzmann constant.
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Subscripts
i, designate the zero-, first-, and second-order radia-
tion effects, respectively, = 0, 1, 2.

INTRODUCTION

THE study of the momentum and energy fields in free jet
flows has received considerable attention in the past and the
present [ 1, 2]. It is well known that in free jets associated with
heat release, the determination of the velocity and the
temperature distributions requires the solution of the
coupled continuity, momentum, and energy equations
with the equation of state. In considering the energy equation,
it has been usual to disregard the possibility that the flowing
gas could be radiating although this may alter the temp-
erature and the velocity distributions in the jet. Recently,
some authors have investigated the effect of radiation
transport on the flow and energy in free jets [ 3. 4]. However,
very few quantitative results have been reported to weigh
the relative effect of radiation to convection transport in
the jet.

" The present paper deals with the momentum and energy
transport in a radiating, laminar, compressible, planar free
jet. The flow model considered here is a jet issuing into a
quiescent atmosphere chosen to be in a thermodynamic
reference state (25°C and 1 atm pressure). The radiative
process is described by the optically thin model. The gas is
usually considered to be optically thin when the character-
istic length of the free jet is small or the radiating gas is
diluted by other non-radiating gases, as in many cases of
practical applications. In this analysis, the governing
equations are investigated by a boundary layer type of
analysis. The radiation loss term occurring in the energy
equation was found to be expressed by a power function of the
enthalpy for most radiating gases up to a temperature of
5,000°R. This is different from the grey gas analysis in that
the temperature dependence of the absorption coefficient
is taken into account here. Based on the power law model,
it is shown that the effect of radiation on the enthalpy
distribution could be treated as a perturbation on the zero-
radiation solution, and the perturbation functions are given
by linear second-order ordinary differential equations.
Explicit approximate expressions for the perturbation
functions are obtained by using integral methods. The
numerical calculations show that the specific enthalpy of a
radiating gas decreases from its zero-radiation value at any
point in the jet. Consequently the density increases, and as a
result of momentum conservation the velocity decreases
from its zero-radiation value except at the center of the jet.

ANALYSIS
Basic equations
The governing equations for a radiating, laminar, com-
pressible, planar free jet subject to the usual boundary layer
approximations are,
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(pu); + (pv), = 0 (H

pute, + pou, = (pu), (2
—{EpY _

puh, + poh, = (Pr h) 00, &

plp* = h*/h 4

where the density p, the enthalpy # and the velocity com-
ponents u and v are functions of the spatial coordinates
x and y. The density p* and the enthalpy #* are those of a
suitable reference state, 0, is the radiation loss per unit
mass.

With the surrounding atmosphere chosen to be at rest
and at a thermodynamic reference state (25°C and 1 atm
pressure) for simplification of the analysis, the boundary
conditions on equations (1){3) are given by:

ou oh
=0, —=0, —= )= 5
v % a 0 aty =0 (5a)
u=0, h=0 aty = oc. (5b)

Since the pressure is constant and the surrounding
atmosphere is non-radiating, the velocity and temperature
distribution must satisfy the conditions of momentum and
energy conservation, ie.

M = constant = 2 { pu®dy (6}
a

and

o X w0
H =constant = 2 { puhdy + 2§ { pQ,dydx. (7
o o0

Equations (1)}{7) give complete specification of the prob-
fem. Before starting with the analysis, the functional de-
pendence of the radiation loss on the enthalpy will be deter-
mined as follows: The radiation loss term in equation (3)
is often written in terms of the Planck mean absorption
coefficient as,

0, = 46K, T* (8)

where K, is the Planck mean absorption coefficient. For
radiating gases up to a temperature of 5,000°R, values of K,
have been calculated from spectroscopic data in [ 5] and [6].
Using the thermodynamic tables on temperature-enthalpy
transformation [ 7]and the calculated values of K, the radia-
tion loss Q, given by equation (8) was plotted vs. the enthalpy
as shown in Fig. 1. It was found that Q, could be easily
fitted by an equation of the type;

o, =Lk ©)

where the power term n varies approximately between 1-75
and 2:0.
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F1G. 1. Radiation energy loss per unit mass {J, as function
of the enthalpy # at a pressure of one atmosphere.

The flow problem
It can be shown [8] that, using the following similarity
variables

x

¥
U
5= ﬁ[p*u*vc. )2, g = g K[pdy (10a)

Fln) =uwU,  G= puflp*u*) = const,

P, = uC,/K = const. (10b)

the governing equations (2) and (6) for the velocity distribu-
tion reduce to

GF" + FF' + (F) =0 (11)

M =208 (F)dy 12)
]
subject to the boundary conditions
F({0) = F"(0) = 0, F'(cv) = 0. (13)
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Equation (11) with its boundary conditions given by
equation (13) possess an exact solution [1, 9],

F' = sech? [1//(26)].

Using equations (12) and (14), the axial velocity U, could
be determined as,

{14)

Uy = g where m = IM/[4/2G)).  (15)

The thermal problem

By using the similarity variables given by equations (10),
the governing equations (3) and (7) for the energy distribu-
tion [with (), given by equation (9)] reduce to,

G (Sh)
— " B — F —~—r = I'S*R" 16
P'h + (Fh) s (16)

o Sho
H=28[Fhdn+2I( | S*%h" dndS 17

0 [X1]

where I' is given by:
T = 32GLAIM?p* %), 18)
Equation (16) is subject to the boundary conditions :

K@) =0, k() =0. (19)

It is known [9] from the zero-radiation solution of
equation (16) that the enthalpy h = 0[1]/S. Therefore under
the condition of 0 < n < 5and with S < 0 [1],the radiation
effect which is represented by the right-hand side of equa-
tion (16) on the enthalpy distribution can be considered as
a perturbation effect on the zero-radiation solution provided
that I' < 1. Since most radiating gases in the temperature
range of the present study are included in the range of
0 <n <35, a solution of equation (16) which satisfies
equation (17) can be written as:

S, ) = Golm)/S + I'S*™" Gy(n) + I'*S°" Gy() + (20)

substituting this cxpression in equation (16) and recognizing
that the order of magnitude of the second and third terms
in equation (20) is much less than that of the first term, after
equating the coefficients of I'S” on both sides of equation
{16), one arrives at the following set of equations:

G *,
= G+ (FGgY = 0

P, (21a)
G i#
7 Gi+(FG)Y —(5-nFG =G}  (1b)
G —_
— Gy + (FGyY — (10 — 2n)F'G, = nG3" G, (21c)

P,
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FiG. 2. Radiation effect on the enthalpy distribution for
different values of heat release.

subject to boundary conditions:
G{0) =0 Gloo)=0 fori=0,1,2 (22)

while equation (17) takes the form:
[}

1 o o0
+ ——— | Gray |+ 212810~} | F'G, dy
5-n
0 1]

and

H=2\|FG,dn+ 2rs’-"U F'G, dy
o

n
+(Td_—2;‘6ng_lGld?]]+... (23)
0

by use of equations (21) and the boundary conditions given
by equation (22), it can be easily shown that the expressions
in parenthesis cancel.

Equations (21) form a set of linear second-order ordinary
differential equations which can be easily solved in sequence
by numerical computations. It can be recognized that
equation (21a) is the governing equation for the zero-radia-
tion solution which was found to possess an explicit solution
[9]. By using the solution of equation (21a), subsequent
solutions for the perturbation functions G, and G, could be
obtained for any radiating gas once its value of n is specified.
An alternative procedure which renders an explicit, but
approximate solution for the enthalpy & will be derived here.
This method is based on the integral methods which has
been previously applied in investigating the flow field in
wakes and jets [10, 11].

The approximate solutions of equations (21) are obtained
by assuming:

G; = a;exp [ ~Pron*/(2G))] for i=01,2 (24

and
Fr=exp [-n*/(26)]

where a; and b; are constants and can be determined by
satisfying both equation (21) at n = 0 and the constraints
implied by equation (23). After solving the resulting alge-
braic equations, the values of a;’s and b;’s were found to be
given by:

(25)

1+Pr\* H
a0=( I > «\/—G, b0=1 (26a)
a; = —afZ,/[(5 - ")\/"], b, =22~ 1/Pr (26b)
a; = —nay 'ay,Z,/{(10 — 2m) J[(n — 1} + b, 1},
(26¢)
b, = Z% — 1/Pr
where
Z=[ri+ (@ +rD}
+0r— (@ + ] fori=12 (27
and
r = ¢ —2n) \/n’ = “- n3— 1/Pr) (282)
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FiG. 3. Radiation effect on the velocity distribution for
different values of heat release.
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F1G. 4. The enthalpy and the velocity distributions for
different values of the radiation loss.

r,=(05- n)\/[(n - 1)+ b,]
@ —2n- 1Py

q2 3

(28b)
the nature of the expression for Z(i = 1, 2) given by equa-
tion (27) arises from the fact that the a,’s are governed by
third-order polynomial equations.

With the values of the G,’s given by equation (24), it is

possible to determine explicitly the velocity and the enthalpy
distributions in terms of the physical coordinates x and y.
The transformation from the S — n coordinates to the
x — y coordinates can be accomplished by considering
equations (10a) and (15) for determining the coordinate x
and equations (4), (10a), (15) and (20) for y. The result is:

_ 4006

x= M (29a)
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and

sl of )
YTV L VAT
son 81 val) ]
+ s \/blerf[_\/(2G n
+ rzsw“z"—;-l";;erf[\/(’;’bz) ;1] + } (29b)

RESULTS AND DISCUSSION

1t is clear, from the nature of the radiation function in
equation (3) that the effect of radiation is to decrease the
enthalpy from its zero-radiation value at any point in the
jet. Such decrease will depend on the heat released at the jet
entrance and the functional behaviour of the radiation loss
on h, Values of k as a function of the distance y from the jet
axis are plotted in Fig. 2 by use of equations (20}, (24) and
I29b) for different values of heat release and for selected
values of the other parameters. Shown also in the figure is
the zero-radiation solution obtained by both exact and
integral methods. It is clear that the integral methods yield
a solution which is quite close to that obtained exactly.
Therefore, the solution for the entbalpy with radiation
obtained by using the integral methods could be considered
reasonably accurate.

The decrease in the value of the enthalpy due to radiation
will result in an increase in the local density as given by
equation (4). Since the momentum at any plane normal to
the jet axis is conserved, the increase in the density will
result in a decrease in the velocity, except at the jet axis
where the velocity is governed by the momentum release at
the jet entrance. Representative values of the velocity
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distribution versus the coordinate y are shown in Fig. 3.
Finally, the dependence of the velocity and the enthalpy
distributions on the radiation loss function is shown in
Fig. 4 for a fixed value of heat released at the jet entrance.
1t is clear from the figure that for large values of n, radiation
plays an important role on the energy transport in free jets.

REFERENCES

1. S. 1. Pay, Fluid Dynamics of Jets, Van Nostrand, New
York (1954).

2. H. SCHLICHTING, Boundary Layer Theory, McGraw-
Hill, New York (1955).

3. S. L. Pa1, Laminar jet mixing in radiation gasdynamics,
Phys Fluid 6, 1440--1445 (1963).

4. M. H. STeiGer and P. K. KHostaA, On radiating laminar
free mixing similarity analysis, Polytechnic Institute of
Brooklyn, PIBAL Report No. 810 (1965).

5. M. M. Asu-Romia and C. L. TiEN, Appropriate mean
absorption coefficients for infrared radiation of gases,
J. Heat Transfer 89, 321-327 (1967).

6. C. L. TN, Thermal radiation properties of gases,
Advances Heat Transfer, V, Academic Press, New
York (1968).

7. JANAF Thermochemical Tables, PB 168 370, National
Bureau of Standards (1965).

8. W. D. Hayes and R. F. ProBsTEIN, Hypersonic Flow
Theory, Academic Press, New York (1959).

9. C.S. Y, Temperature distribution in a steady laminar,
prebeated air jet, J. Appl. Mech. 17, 381-382 (1950).

10. M. H. STEIGER and K. CHEN, Further similarity solutions
of two-dimensional wakes and jets, 4744 Ji 3, 528--530
(1965).
11. M. H. Steicer and M. H. Broom, Further similiarity
solutions of axisymmetric wakes and jets, 4744 JI 3,
548-550 (1965).

Pergamon Press 1969.  Printed in Great Britain

AN EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF
SLOT-LIP-THICKNESS ON THE IMPERVIOUS-WALL EFFECTIVENESS OF THE
UNIFORM-DENSITY, TWO-DIMENSIONAL WALL JET

S. C. KACKER and J. H. WHITELAW

Imperial College of Science and Technology, Department of Mechanical Engineering,
Exhibition Road, London S.W.7

(Received 1 January 1969)

NOMENCLATURE
a, constant;
b, constant;
m, mass concentration;
t, thickness of slot lip;

u, velocity in x.direction;
ii, average velocity through the slot
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